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1.0 INTRODUCTION

Many areas of the Space Shuttle are subjected to heating environments

which produce skin temperatures in the range of 5000 to 18000 F. A metallic

re-radiative heat shield provides an efficient approach to thermal protection

in these areas. (See Figure 1.1.) Conventional design approaches typically

utilize secondary structural heat shield panels attached to the primary vehicle

structure with standoffs which provide space for thermal insulation behind the

panel. Surface pressures are reacted by the bending stiffness of the panel and

transmitted to the primary structure through the standoffs.

The 3DSX/foil heat shield concept provides an alternate approach in which

a three-dimensionally woven silica insulation is used as a structural member

to transmit surface pressures directly to the primary structure. The insulation

is packaged within a superalloy foil enclosure which is attached to substructure

by tie wires which penetrate the insulation. The system combines the benefits

of a rugged system with reusability, low weight, and good thermal performance.

The overall objective of this program was the development of the 3DSX/foil

concept to specific workable configurations and the demonstration of the mul-

tiple reuse capability of these configurations in a representative thermal and

acoustic environment. Specific objectives were to:

a. Select suitable metallic foil and insulation materials.

b. Define the optimum geometry of construction.

c. Define attachment methods.

d. Demonstrate fabricability.

e. Demonstrate the reuse capability of the composite TPS.

f. Deliver specimens for test by NASA.

This program was conducted under the direction of the Avco Space Shuttle

Program Office, J. W. Graham, Manager. The program manager was J. G. Alexander.

Structural analyses were performed by P. J. Roy and R. H. Brown. Detail de-

sign of specimen configurations was performed by D. A. Mosher. The technical

monitor for NASA/MSFC was H. M. King.
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2.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

2.1 Summary

A total of 14 specimens representing 10 variations of the foil enclosure

configuration were fabricated and evaluated. Four configurations were sub-

jected to ten 18000 F thermal cycles, and to acoustic exposures for as much

as ten minutes duration at overall sound pressure levels of 154 db and 168 db

for a demonstration of reuse capability.

The most significant design problem was that of controlling thermally

introduced stresses which caused compressive crippling and subsequent fatigue

cracking in areas of the enclosure subjected to severe temperature gradients.

Designs incorporating selective stiffening in regions of the enclosure sub-

jected to compressive loading were developed which satisfactorily resolved

this difficulty. Elastic buckling caused by thermal expansion of the top sur-

face of the enclosure was another problem area. Although elastically buckled

areas were not subject to cracking, the foil deformations were considered

undesirable because of the potential for application of the concept to aero-

dynamic surfaces. Two techniques were developed which were effective in

improving or eliminating surface buckling. One utilized a two-piece design

with the top of the enclosure structurally decoupled from the sides (floating

top). The other incorporated stiffening members which deflected elastically

on heating to load the top as a tension membrane. The two deliverable specimens

which were fabricated for evaluation by NASA incorporated these features.

Specimens were fabricated using both Hastelloy-X and Haynes 25 superalloy

foils in thicknesses ranging from 0.003 to 0.006 inch. There was little dif-

ference in the ease of fabrication (bending, welding, etc.) of enclosures

using these materials. The Haynes 25 was more susceptible to development of

cracks in crippled areas during the thermal and acoustic tests, however.

High purity fibrous silica components were used in the 3DSX insulation.

Based on previous studies, no degradation was anticipated for cyclic exposure

at the 18000 F temperature level. This was further substantiated by the reuse

demonstration tests in which there was no apparent degradation of thermal or

mechanical characteristics of the 3DSX caused by the thermal and acoustic

exposures.

2.2 Conclusions

The major conclusions from the current effort are:

a. 3DSX/foil design configurations which have multiple reuse capability

at surface temperatures of at least 18000 F appear feasible.

b. Hastelloy-X foil and high purity silica are credible candidate material

components for surface temperatures to 18000 F.
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c. Compressive crippling of foil (caused by severe temperature gradients)
must not be permitted because of rapid development of fatigue cracks
in crippled areas.

d. Thermally induced crippling and surface buckling can be eliminated by
appropriate design configurations.

e. The 3DSX/foil concept is not sensitive to acoustic environments repre-

sentative of launch conditions for the Space Shuttle.

2.3 Recommendations

It is recommended that further thermal and acoustic cycling tests be per-
formed on the final configurations evolved from this program with the objective
of demonstrating a 100 mission capability. The two deliverable specimens are
suitable for this purpose.

A comprehensive study is required to better define the aerodynamic flutter
characteristics of the system and to optimize the surface stiffening method.
A combined analytical and experimental program is suggested.

Scale-up of the final configurations to more realistic panel sizes (several
square feet) should be accomplished. Additional thermal testing should be
performed to establish that the thermal growth management concepts developed
on this program are workable in realistic panel sizes.
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3.0 THERMAL PROTECTION SYSTEM PANEL DESIGN

3.1 Description of 3DSX/Foil Concept

The principal features of the 3DSX/Foil configuration are illustrated in
Figure 3.1. The 3DSX insulation material is comprised of thin layers of a
high-purity silica felt (J.P. Stevens Astroquartz) which are precompacted in a
fixture to a density of 5.8 lb/ft 3 . The felt -layers are held in the compacted
state by closely spaced stitching through the thickness using Astroquartz yarn.
The resulting woven mat (Figure 3.2) -possesses good handling characteristics
and is an excellent low density, high temperature insulating material.

The insulation material is enclosed on the top surface and along four
sides by a superalloy foil. The foil is sealed along the lower edges to the
skin of the vehicle to provide a moisture resistant enclosure to protect the
insulation material.

The foil enclosure was fabricated from nickel and cobalt base alloys in
the thickness range of 3 to 6 mils which can be easily formed into a box shape
with the corners made using a box fold for sealing purposes. To complete the
assembly the 3DSX is placed into the foil enclosure and the two components are
fastened together by tie-down wires. These wires are attached to the inner
surface of the foil at discrete locations, pierce the 3DSX insulation, and
attach at the back surface to nut strips (Figures 3.1 and 3.3), bonding pads,
or directly to substructure. This then forms a complete self-contained
metallic TPS system.

The novel feature of this concept is that it reduces the structural
requirement of the metallic surface component by reacting the external pressure
loads through direct compression of the compacted 3DSX insulation rather than
through bending stiffness to the foil. All venting pressures, vibration and
flutter loads are reacted by the vehicle structure through the discrete tie-
down wires. This results in substantially lower system weight than a structural
metallic heat shield would require.

During the course of the program several variations of the basic design
concept were investigated. These latter systems used approaches which a)
employed several top and side texturizing patterns, b) investigated various
foil to substructure attachment methods, c) provided stiffeners at the top edges,
and d) allowed for a "floating top".

3.2 Design Environments

A simplified thermal environment was specified which approximated a typical
reentry heating trajectory. It consisted of a surface temperature history with
a linear temperature rise to the maximum temperature during the first 300 sec-
onds, a 900 second hold at the maximum surface temperature and a linear decay
to room temperature over a 400 second period. Maximum surface temperatures
were to be in the range 12000 to 18000 F.
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The design acoustic environment specified was 154 dB overall sound pressure
level with a spectrum as indicated in Table I. The acoustic levels were in-
creased to an overall sound pressure level of 168 dB during the course of this
program, corresponding to current design requirements for the base region of
the orbiter during launch. Testing was performed in atmospheric air at both
of these levels as discussed in Section 4.0.

TABLEI

DESIGN ACOUSTIC ENVIRONMENTS

Octave 154 dB SPL 168 dB SPL

Band Noise Level* Tolerance Noise Level Tolerance
(Hz) (dB) (dB) (dB) (dB)

23.8 - 47.2 133.7 +6, -2 152 (Not
47.2 - 92 139.3 +6, -2 155 Specified)

94 - 188 142.7 +5, -1 157
183 - 375 146.8 +4, -1 157
375 - 750 150.7 +4, -1 155
750 - 1500 144.0 +5, -1 151

1500 - 3000 139.7 +6, -2 146
3000 - 6000 133.2 +6, -2 140

Overall 154.0 +4, -0 168

*Reference for dB level is 0.0002 dynes/cm2 rms.

3.3 Selection of Materials

Tables II and III list metallic foil and ceramic fiber insulation materials
which were considered viable candidates for the development of the 3DSX/foil
concept.

A detailed evaluation of the long term high temperature stability and
cyclic environmental capability of all candidates was not intended in this
program. The selection of foil and insulation component materials was based
largely on results of a previous related program (Ref. 1) in which comprehensive
experimental evaluations were performed. In that program, a number of candi-
date metallic foils and ceramic fiber insulations were subjected to cyclic
thermal and acoustic environments corresponding to 100 shuttle missions at
surface temperatures as high as 25000 F.

It was immediately recognized that designing for the management of thermal
growth and the related thermal stresses was a major development problem. It was
decided to adopt a conservative approach to materials selection as related to
temperature capability so that the concept development would not be hampered by
chemical and structural changes within the materials themselves. Accordingly,
18000 F was selected as a maximum design temperature. Previous work on 3DSX
insulation development (Refs. 2 and 3) as well as theoretical considerations
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TABLE II

CANDIDATE CERAMIC INSULATION MATERIALS

Maximum Use Approximate

Composition Trade Name Manufacturer Temperature Price Per lb

(OF) ($)

1. Fused Si02 Astroquartz J. P. Stevens Co. 2300 79

N.Y., N.Y.

2. Fused Si02 Irish H. I. Thompson Co. 2500 30

Refrasil Gardena, Calif.

3. Fused Si0 2  Refrasil H. I. Thompson Co. 2300 25

Gardena, Calif.

4. Alumino Thermoflex Johns-Manville 2300 5

Silicate

5. Alumino Fiberfrax Carborundum 2300 5

Silicate

6. Sodium Calcium Superglass Eagle-Picher 1800 3

Silicate

TABLE III

CANDIDATE FOIL MATERIALS

Maximum Use

Material Temperature
(OF)

Type 321 stainless steel 1200

Inconel 702 1500

Inconel 601 1500

TD Nickel Chrome 2000

Hastelloy-X 2000

Haynes-25 2000
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had demonstrated that high purity fused silica (e.g., J. P. Stevens Astro-
quartz) was capable of virtually unlimited temperature cycling to 18000 F. At
temperatures exceeding 18000 F, silica is subject to phase transitions, par-
ticularly to a-cristobalite, with corresponding dimensional and structural
changes. The transition occurs rather slowly, so that the actual cyclic tem-
perature capability for typical shuttle trajectories may be considerably greater
than 18000 F.

Reference 1 also indicated a distinct mechanical stability advantage of
Astroquartz in severe acoustic environments. Consequently, Astroquartz com-
ponents were selected for fabricating all the 3DSX insulation for this program.
No significant advantage other than raw material cost was evident for the
other candidate fibrous materials.

Reference 1 presented oxidation data for various metal foils with cyclic
exposures corresponding to 100 shuttle missions at temperatures as high as
22000 F (Table IV). Hastelloy-X was the most favorable foil material both for
oxidation resistance and for resistance to fatigue cracking. On this basis,
Hastelloy-X was chosen as the primary foil candidate. It was considered the
best of the available nickel-based superalloys for extended service at 18000 F.

TABLE IV*

RESULTS OF REENTRY CYCLING ON FOILS FOR 100 CYCLES TO 22000 F

Substrate Max Thickness of
Alloy Thickness Surface Oxides

(in) (in)

Hastelloy-X 0.0018 0.00012

Inconel 601 0.0036 0.00036

Inconel 702 0.0042 0.00070

TD Nickel Chrome 0.012 0.00040

On completion of above tests there was no visible crack-
ing of the oxidized layer or foil.

*Data from Reference 1.

It was decided to include a cobalt-based superalloy, Haynes 25, as a
backup foil candidate. Haynes 25 was not evaluated in Reference 1, but was
reported to have similar high temperature properties and superior oxidation
resistance as compared to Hastelloy-X. Off-shelf availability of these materials
in foil form of sufficient size for the desired specimens was a second major
consideration in their selection for this program.
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3.4 Enclosure Fabrication Studies

Some of the operations necessary for fabricating the superalloy foil

enclosures required some minor technique development. These included methods

for texturing, beading, folding, and welding Hastelloy-X and Haynes 25 in foil

thicknesses ranging from 3 to 6 mils.

Three techniques were utilized for stiffening the top surface of the

enclosure; texturing, beading, and welded stiffeners. Texturing the entire

foil sheets between rollers prior to cutting and folding the enclosure was

initially considered the most desirable method because it offered a low cost,

high volume solution to the foil stiffening problem. Accordingly, the standard

patterns of several textured metal fabricators were considered and samples

were obtained for evaluation (Figure 3.4). These fabricators do not ordinarily

texture material less than 15 mils in thickness. With the cooperation of

Ardmore Textured Metals of Edison, N. J., some development work and experimen-

tation was performed for texturing 3 to 6 mil superalloy foils. Gathering was

a problem and pattern depth was limited depending on foil thickness, but

several of the standard patterns were successfully textured in the thin foils.

Ardmore's "Oxford" Pattern was selected for detailed evaluation. Texture depths

up to 42 mils were successfully fabricated by Ardmore in 6-mil Hastelloy-X and

5-mil Haynes 25. Several textured sheets were obtained for structural

evaluation.

The second approach to stiffening the thin foil was beading the surface

(Figure 3.5). The desired pattern was machined in aluminum die plates and the

foil pressed to conform using a rubber pad in contact with the foil (Figure

3.6). This method had the advantage that different bead patterns and bead

orientations could be used on the top and sides of the specimens according to

the structural requirements of the particular application.

The third approach for top stiffening used hat section stiffeners spot

welded to the top surface (Figure 3.7). This was considered a less desirable

stiffening approach because of cost and additional complexity of the configura-

tion. Resistance spot-welding with a United 1-065-02 welder was successfully

used for attaching stiffeners and tie-straps. Electrode and jaw modifications

were necessary for particular applications where welding was performed on the

inside surface of the folded enclosure.

Figure 3.8 illustrates the tie strap configuration for mechanical attach-

ment of the foil to a substrate. A "U" shaped strap was spot-welded to the top

surface of the enclosure and the legs of the "U" folded over. The folded con-

struction of the strap adds rigidity and provides a rounded edge to reduce

chaffing of the wire where it bears on the strap. The diameter of spot welds

was approximately 1/16 inch and tensile strength of the welded joints exceeded

20 pounds. Figure 3.9 illustrates the weld test configuration and Table V

presents weld strength data.
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TABLE V

SPOT WELD STRENGTH DATA

Material Type Weld Vendor Weld Strength

(lbs)

.006 Hastelloy-X 1/8 Dia. Button Weld Applied Energy 46 71 58 53

.006 Haynes 25 1/8 Dia. Button Weld Applied Energy 67 68 56

.006 Hastelloy-X 1/16 Dia. Res. Spot Avco - Wilmington 36 35 39 36

.006 Haynes 25 <1/16 Dia. Res. Spot Avco - Wilmington 48 35 58 46

.003 Hastelloy-X 1/16 Dia. Res. Spot Avco - Lowelll 42 38

.003 Hastelloy-X 1/8 Dia. Res. Spot Avco - Lowell 22 30

.003 Hastelloy-X 1/16 Dia. Res. Spot Avco - Lowell 28 28 19

.003 Hastelloy-X 1/8 Dia. Res. Spot Avco - Lowell 31 38 28 Repeats

.006 Haynes 25 1/8 Dia. Res. Spot Avco - Lowell 24 23 68

Hastelloy-X and Haynes 25 foils were not readily available in widths

greater than 12 inches. Therefore methods for splicing foil sheets by electron

beam seam welding were investigated. Figure 3.10 illustrates several foil

splices fabricated in the foil materials by Applied Energy, Inc., of Burlington,

Massachusetts. All of these were successfully texturized after welding. Ten-

sile strengths of the splices approached that of unspliced sheets, even after

texturing. The overlap weld appears most practical from the fabrication stand-

point, because the other two configurations require high accuracy of cutting

and alignment of the foils to achieve a satisfactory joint.

Electron beam "button" welds were considered as possible substitutes for

resistance spot welds (Figure 3.11). The principal advantage of this method

is that welding can be achieved with access from one side of the workpiece.

Also the diameter of the "button" can be adjusted as desired to derive higher

joint strengths. One problem noted with the technique is that good clamping

of the workpiece is necessary to prevent local warping resulting in incomplete

weld penetration as illustrated in Figure 3.11.

Even when textured, folding of the foil was readily accomplished for the

simple box configurations. A standard box fold (Figure 3.12) was used in the

corners of all the enclosures. A five-sided enclosure can be folded with this

technique without cutting or welding joints; a most desirable feature from the

aspect of cost, strength, and moisture sealing.

Two types of sliding joints were used for the two piece floating top

designs (Figure 3.13). The textured floating top design (Specimens 7 and 12)

utilized a stiffener spot-welded around the perimeter of the textured top

-18-
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which interlocked with the sides of the enclosure. A more satisfactory joint
from the standpoint of both structure and sealing is shown for Specimen 14.
This type of joint required untextured foil and was used in conjunction with
stiffening beads on the top of the enclosure.

3.5 Structural Design Study

3.5.1 Foil Stiffness Evaluation. - Hastelloy-X (nickel base alloy) and
Haynes 25 (cobalt base alloy) were selected for evaluation as candidate enclo-
sure materials. Typical properties for these two materials are presented in
Table VI indicating that both materials are suitable for the 18000 F operating
temperature.

TABLE VI

HIGH TEMPERATURE PROPERTIES OF HASTELLOY-X
AND HAYNES 25 SUPERALLOYS

Ultimate Tensile Yield Strength
Strength, 1000 psi 1000 psi

Temp OF RT 1200 1500 1800 RT 1200 1500 1800 RT 1200 1500 1800

Haynes 25 146 103 50 34 67 35 36 23 64 35 16 41
(sheet)

Hastelloy-X 114 83 52 22 52 40 37 16 43 37 34 45
(sheet)

At the outset it was clear that one of the difficulties with using thin
foils on the surface would be the effects of aerodynamic flutter. Ascent vent-
ing pressure also was of concern and these two factors combined would dictate
the optimum foil thickness and tie down spacing. In both instances the problem
could be traced to foil bending stiffness; the greater the foil bending stiff-
ness the larger the tie down spacing thereby making a more tractable design.
Therefore, experiments were required to evaluate the effectiveness of texturing
for increasing foil stiffness.

3.5.1.1 Flexure Testing. - Ardmore's Oxford texture pattern was selected
and a number of sheets were texturized varying the foil thickness and texture
depth. These sheets were then cut into 3 x 3 inch plates and tested in flex-
ure under quarter point bending to determine their flexural properties. The
results are presented in Table VII; the values given represent an average
taken from a minimum of four tests per direction. The flexural stiffness
shown is the effective El of the textured materials and as expected the texture
pattern has different bending stiffnesses in the longitudinal and transverse
directions.
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TABLE VII

FLEXURE PROPERTIES OF TEXTURED FOILS
(ARDMORE'S OXFORD PATTERN)

Flexure Texture Efficiency Factor
Foil Foil Texture Stiffness (Ratio of Stiffness of

Material Thickness Depth Textured to Flat Foil)
lb-in

2

Longitudinal, Transverse, Longitudinal, Transverse,
Units in. in. X Y X Y

Hastelloy-X .003 .037 .252 .406 3.9 6.1

Hastelloy-X .006 .037 1.291 1.691 2.4 3.2

Haynes 25 .006 .017 .993 1.352 1.8 2.5

Haynes 25 .006 .037 1.564 2.401 2.8 4.4

The effectiveness of the texturing for increasing the foil bending stiff-
ness can be determined from the data in the efficiency factor columns. Values
shown indicate the increase in bending stiffness obtained by the texture pat-
tern over that of an equivalent thickness flat sheet. Based upon the compari-
son between the two .006 inch thick Haynes 25 specimens, it is clear that the
deeper texture pattern enhances the bending stiffness. As a result the .037
inch nominal texture depth was selected for all further studies. Using this
texture depth in the Oxford pattern, increases in bending stiffness ranging
from 2.4 to 6.1 were attained for thin foils.

3.5.1.2 Tensile Testing. - In addition to the flexure testing, several
tensile tests were performed on .005 inch thick Hastelloy foil textured to the
nominal .037 inch depth. Here, as with the flexure tests, specimen widths were
selected to ensure that several repeating texture patterns were included in the
gage section to obtain representative results. The purpose of these tests was
to determine the effect of texturing on extensional stiffness. Typical results
in the form of stress strain curves are presented in Figure 3.14. A stress
strain curve for an untextured .005 inch thick foil is included for comparison.
As expected these results show that the texturing reduces the initial exten-
sional stiffness by as much as a factor of 4 in the strong direction and up to
6 in the weak texture direction. At higher stress levels a wider disparity is
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noted. As expected, the textured foil has a much higher elongation than the
untextured foil.

3.5.2 Enclosure Tie-Down Optimization. - One of the key elements in the
design of the foil enclosure is the number and location of the tie-down wires
required. Functionally, these wires retain the thin foil surface by drawing
the foil down and precompressing the 3DSX insulation beneath. As long as these
wires maintain a precompression between the foil and the insulation, the foil
is stabilized by the insulation which acts as an elastic foundation.

Two factors influence the optimum tie down spacing; these are ascent
venting (burst) pressures, and aerodynamic flutter. Although thermal mechani-
cal loads exert a strong influence on the overall structural design of the
enclosure their interaction with the design of the tie-down wires is minimal,
therefore they are treated separately in Section 3.5.3. This section presents
results of design tradeoff studies directed at selecting a satisfactory tie-
down spacing.

3.5.2.1 Ascent Venting. - Failure modes associated with ascent venting
include stress failure of the foil at or between the discrete ties, failure
in the tie wires themselves or failure of the weld at the foil-wire attachment.
Each of these failure conditions were evaluated parametrically in the form of
allowable venting pressure versus tie down spacing. Results of this study are
presented in Figures 3.15 and 3.16 for the 3- and 6-mil foils, respectively.
In each figure, curves are presented for the allowable burst pressure consi-
dering either stress failure in the foil, stress failure in the wires or fail-
ure of the weld.

For the foil and wire calculations, a Hastelloy-X yield strength corre-
sponding to 15000 F was used. This is believed to be a conservative estimate
for the ascent phase where maximum venting pressures occur. A 20-mil diameter
wire was used in the calculations (corresponding to the test specimen confi-
guration). A weld strength of 15 pounds was assumed for the 3-mil foil and 50
pounds for the 6-mil foil (reflecting the results presented in Table V).

Stresses in the foil were determined using two different approximate solu-
tions to provide bounds on the true solution. In one analysis the panel sur-
face was treated as a continuous isotropic plate supported in a square pattern
by discrete point supports and loaded by a uniform normal pressure. Directional
variation of textured foil properties was not considered nor was the effect of
in-plane membrane loads. Foil properties used for this and the subsequent
analysis were taken from the flexure test data where the minimum flexural stiff-
nesses (weak direction) and a foil modulus of 27.5 x 106 psi were used to de-
termine an equivalent thickness for the textured foil. This resulted in
calculated equivalent thicknesses of 4.7 and 8.0 mils for the 3- and 6-mil
foils, respectively. Tie-down spacings were then determined as a function of
lateral pressure (assuming 15000 F properties for the foil) using data given
in Reference 4. For this analysis the maximum bending stress occurred midway
between tie wires.
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This analysis provided a conservative estimate for the required tie-down

spacing. In addition to neglecting the directional properties of the foil and

using minimum foil bending stiffnesses for the stress analysis, further con-

servatism was included by ignoring the membrane tensile stresses in the bending

analysis. These membrane stresses are developed in the surface because of the

lateral pressure exerted on the enclosure sides and tend to counteract the

effect of the normal pressure on the surface. Membrane stress effects would

be most pronounced for the thinner (.003 inch) foil, which closely approaches

a true membrane because of its lower bending stiffness. As the foil bending

stiffness increases with the thicker foils, the positive effect of these mem-

brane stresses becomes progressively smaller and the simple bending analysis

yields reasonably accurate stress predictions.

To evaluate the significance of these membrane stresses on the tie-down

spacing, a second series of analyses were performed considering both the

lateral pressure and the inplane membrane loads. Because no solution was

available which treated a continuous plate with discrete point supports under

the combined action of lateral and in-plane loads, a simplified strip model

was employed for this analysis. This model consisted of a unit strip with

fixed ends, with the length adjusted to represent the spacing between the dis-

crete tie downs. The fixed ends simulated the effect of the discrete ties

because under lateral pressure there would be a zero slope in the actual en-

closure surface. Furthermore, because the maximum stress in the point supported

plate analysis occurred midway between the ties, the plate stress was closely

approximated by the strip model for the degenerate case where the membrane

stress was equated to zero.

Results for both analyses are presented in Figures 3.15 and 3.16, neither

of which represent the true solution; however, it is reasonable to expect that

they do bound the correct solution. Examining Figure 3.15 for the 3-mil tex-

tured foil considering all three failure conditions, it can be concluded that

the governing design condition is either foil bending stress or the strength

of the welds. Remembering that the foil stresses are bounded by the two

stress curves it would seem that for the 3-mil foil the design condition should

be the weld strength because it lies between the two stress curves.

The controlling parameter which dictates the tie down spacing for the

6-mil foil over the range of reasonable tie spacings is the stress in the foil.

Both the wire strength and weld strength curves lie above the stress envelope

throughout this range. Both 6-mil foil stress curves approach one another

more closely than for the 3-mil foil. This is attributed to the higher bending

stiffness of the 6-mil foil.

3.5.2.2 Surface Flutter Evaluation. - Available solutions to the aero-

dynamic flutter of plates subjected to supersonic flow are somewhat limited

in that they treat a restricted range of elastic support and boundary conditions.

Short of general design information given in Reference 5, which studied the

effects of orientation of panel stiffening relative to the direction of flow,

the literature provided little concrete information which could be applied di-

rectly to the foil enclosure. In Reference 5 it was observed from wind tunnel

tests on stiffened panels that panels with their primary stiffness direction
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oriented parallel to the flow direction were much less susceptible to flutter
than those with crossflow stiffening.

Except for this important aspect, no complete solutions were obtained for
either of the two models examined for the foil enclosure. One model consisted
of a thin plate supported by a continuous elastic foundation. This model
assumed that the tie wires were spaced sufficiently close together to provide
an initial compression between the foil surface and the 3DSX insulation such
that the insulation would act as an elastic foundation for the foil. The
obvious weakness in this approach was that to ensure the existence of a pre-
compression with the thin foils the tie wires would have to be spaced at very
close intervals (i.e., less than 1 inch apart). Calculations modeling a beam
on an elastic foundation (the 3DSX) indicated that larger wire spacings
created local precompression in the region of the attachment only, with no
overlap between adjacent attachment points. Furthermore, there appears to
be some confusion relative to the stabilizing effects of elastic coupling to
a substructure. In Reference 6, results are presented for the flutter boundary
of two simply supported.plates coupled by an elastic layer using a two mode
Galerkin solution. These results indicate that in the low stiffness range,
the elastic coupling has a destabilizing influence. As the stiffness increases
there is a positive effect noted. A degenerate case of the above solution was
investigated where the stiffness of the lower plate was infinite.

Results of this analysis (Refs. 7 and 8) using a similar two term Galerkin
solution indicated that the elastic layer had no effect on the predicted flutter
boundary. This is interpreted to mean that although the onset of flutter oc-
curs at the same condition with or without the elastic foundation, the severity
of the disturbance is diminished by the elastic support.

Because this analysis was only qualitative, a second approach was at-
tempted to arrive at a suitable definition of tie-down spacing. As noted
earlier for reasonable tie spacings with thin foils, the effect of precompres-
sion in the insulation is localized. The second model assumed that the surface
between discrete ties could be idealized as a simply supported square plate.
It was assumed that since the precompression around the wire covered a finite

area in the region of the ties, the effective unrestrained distance between
ties would be less than the actual tie spacing. For relatively closely spaced
tie wires, a simply supported plate model with side lengths equal to the actual
center-to-center spacing should provide a conservative estimate for the flutter
boundary.

Using this configuration and a flutter envelope given in Reference 5

(presented here as Figure 3.17), calculations were made to determine the appro-
priate tie down spacing for the 3- and 6-mil textured foils to inhibit the

onset of flutter. For a specified plate aspect ratio, the critical condition
for aerodynamic flutter occurs when the parameter fj2-1/q* is a minimum. For

'Symbol Definition:

M = Mach Number

q = Dynamic Pressure

(1/w)eff = Effective Aspect Ratio

E = Modulus of Elasticity

teff = Effective thickness of textured foil
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For the "PHi-2" orbiter trajectory considered (Ref. 3) this occurs during as-

cent at a peak dynamic pressure (q) of 4.5 psi at a Mach number (M) of 1.1,
resulting in a value of .1 for the parameter f M2-i/q . For the entry condi-

tion the minimum value of this parameter was .45 clearly showing that the

ascent case is more critical.

Utilizing these values for the ascent and entry conditions, and the equiv-

alent foil properties given in Table VII, the required tie-down spacing was

calculated for an aspect ratio (e/W)eff of 1.0. For an aspect ratio of 1.0,
the flutter parameter,( M212--/q)1/3 teff/e , has a value of .47. This was
solved directly for the tie spacing, f . The results are presented in Table VIII
for 3- and 6-mil textured Hastelloy foils and for both the ascent and entry

trajectories. Based upon these results a common two inch spacing was selected
for the test configurations. As shown in Figure 3.17, the 3-mil design is

marginal and the 6-mil foil design has a substantial positive flutter margin

during ascent. Both designs have positive margins during entry. Referring
to Figures 3.15 and 3.16, the allowable venting pressure for the 3- and 6-mil

enclosures would be 2.8 and 3.4 psi, respectively, with the selected 2 inch

tie spacing.

TABLE VIII

FOIL TIE DOWN SPACING TO PREVENT AERODYNAMIC FLUTTER

Effective Maximum Tie-down SpacingEffective

Foil Description Thickness (t) Ascent Entry
(inch) (inch) (inch)

3-mil Hastelloy-X
(.040 nominal .0055 1.65 4.78
texture depth.)

6-mil Hastelloy-X

(.040 nominal .0089 2.55 7.73
texture depth)

3.5.3 Thermomechanical Behavior. - Thermal stresses arise because of the

temperature gradients which exist between the top of the enclosure and the

sides. The top operates essentially at a uniform temperature peaking at ap

proximately 18000 F whereas the sides are exposed to a temperature gradient

ranging from 18000 F at the top edge to as low as 1000 F along the lower edge.

Consequently, if the top is integrally connected to the sides its expansion

will be limited by the cooler sides giving rise to compressive stresses in

the surface. These compressive stresses could cause the surface to buckle or

fail in compression if the foil is not adequately stiffened. One method to

relieve these stresses in the top is to allow it to expand freely relative to

the sides by using a sliding joint along the edges as was employed in one

test concept.
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A second area of concern was the side near the top edge. Here again the
problem is caused by thermal gradients where the top edge is restrained from
expansion by the sides. In this instance, however, the failure can be more
acute, whereas the top could buckle elastically because of thermal stresses
and return to a flat configuration.upon cool down, an edge failure would most
likely involve a permanent deformation in the form of a crippling failure.
Crippling failures are of a local nature and usually manifest themselves by
local crushing at the top edge of the enclosure. Several different enclosure
designs were fabricated and tested in an attempt to arrive at a design which
could sustain the thermal environment without failure.

One Piece Textured Foil Enclosure. - The simplest, or reference.concepts
consisted of a one piece unit with textured foil in the Oxford pattern. A
total of seven units of this type of enclosure were fabricated and tested
varying the foil material and thickness. (The tests are described in Section
4.1.) This type of construction probably constituted the worst case for both
surface buckling and edge crippling, but it represented the simplest and most
practical enclosure. The objective in these tests was to determine if by
varying the foil thickness within practical limits it might be possible to ar-
rive at a thickness which could sustain the thermal strains without failure.
For the foil thicknesses considered (i.e., .003 to .006) elastic buckling of
the enclosure surface during heating was anticipated; however, it was assumed
that upon cool down the surface would return to its original flat shape. This
behavior was predicated on the condition that edge crippling did not occur.
Consequently the crucial factor in these designs was whether or not the tex-
tured foil in the .003 to .006 inch thickness range when bent to form the en-
closure edge would cripple during heating.

Simplified crippling models indicated that for an untextured foil the
edge would most certainly cripple because thermal strains in the edge would
approach 1.0 percent. This far exceeds even the room temperature yield stress
of the untextured material (Figure 3.14). However, because the edge crippling
stress is proportional to the yield strain of the material it was postulated
that because of the higher yield strain exhibited by the textured foil, there
was a possibility that it could absorb the thermal strains without failure.

Beginning with this as the reference concept, selected changes and modi-
fications were made to improve upon the enclosures structural performance in
the thermal environment. These modifications consisted of either changes in
the top, the edge or the sides to prevent surface buckling or edge crippling.
In many instances several of these innovations were incorporated in a single
test article. The most significant design variations evaluated in this program
are discussed below.

Floating Top. - Because the enclosure surface is exposed to uniform heat-
ing the most direct.approach to relieve the thermally induced stresses in this
area was to allow the top to expand freely as a flat plate. This was accom-
plished by making the enclosure in two separate pieces. The top was fastened
to the sides using a sliding joint along the four edges to allow for free
unrestrained expansion.
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Stiffened Top. - One of the problems with the reference design was that
its bending stiffness was insufficient to prevent buckling during heating.
This surface buckling was not only cause for concern as itaffected the aero-
dynamic characteristics of the surface, but it also tended to aggravate the
edge crippling problem. This occurred because the top buckled at a very low
stress level, making it ineffective in carrying any additional compressive
load. Consequently, only a small area of the top, that in the proximity of
the edge, continued to carry a load. Because the cross sectional area of the
unbuckled edge was relatively small compared to the cooler sides it was effec-
tively fully restrained from expansion by the sides. This is illustrated in
Figure 3.18 which examines the thermal stresses in the center region of a two
material restrained curvature model. In this figure the stresses in the heated
top strip (panel edge) are plotted as a function of top-to-side stiffness
ratio(EAT/EAS). Note that when the stiffness (EAT) of the top strip is small
relative to the side stiffness, the top is effectively fully restrained and
attains its maximum thermal (EaAT) stress. As the stiffness of the top in-
creases, the stresses diminish indicating that the top layer is beginning to
do work on the side member.

Based upon this reasoning it was concluded that if the top of the enclo-
sure could be suitably stiffened such that it did not buckle, this would not
only produce a better aerodynamic surface but it would also tend to relieve
the edge stresses. Two methods of stiffening the top were evaluated, one con-
sisted of hat stiffeners welded to the under side of the surface and the other
used beads embossed directly onto the surface of the foil. In both cases the
stiffening was aligned with the long direction of the panel because in rec-
tangular panels under in-plane compression, the buckling will usually occur
with waves running along the length.

Edge Stiffening. - Edge crippling under the thermal/mechanical loads was
one of the more serious problems because a failure of this type can quickly
lead to the formation of a crack under thermal cycling or during acoustic ex-
citation. In an attempt to prevent this occurrence, methods to stabilize the
edges were examined. In general, crippling involves a local failure along
the edge and around the 900 corner. Therefore, one approach examined to sta-
bilize the edge was to incorporate a closure member across the inside edge of
the enclosure as illustrated in Figure 3.19. This member tended to maximize
the area available to resist crippling by providing an integral corner which
stabilized the area enclosed by the stiffener as well as the immediately adja-
cent surface.

Edge stiffening of this type was also used to support the sides of one of
the floating top designs. Without this added support the side behaved like a
thin plate subjected to pure bending when subjected to the thermal gradient.
As such the edge was prone to buckle laterally or cripple locally. With the
internal edge stiffener the sides were stabilized in much the same way a flange
stabilizes a compression member.

Internal edge stiffening provided sufficient crippling strength; however,
it was noted that lateral inward buckling of the long side could occur because
the thin foil surface was not sufficiently stiff in compression to stabilize
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the sides over long lengths. (See Figure 3.20a.) An examination of this be-

havior lead to the conclusion that the edge member was loaded eccentrically

which caused the edge to bend inward. This can be visualized by examining

Figure 3.20b which shows the loads introduced into the edge member of a float-

ing top design. The compressive load in the edge is induced by the restraint

offered by the side. However, the compressive load is developed by shear

stresses which occur over a finite length at the ends of the sides as shown

in Figure 3.20. Usually, these shear stresses are neglected by appealing to

St. Venant's principle which in effect attributes these to local effects that

are not of importance except in the local area at the ends. In any event, the

location of the shear restraint is of concern here because it is eccentric to

the center of gravity of the edge closure. Therefore, for axial equilibrium

this shear must be balanced by an axial compressive load and a moment about

the c.g. of the edge member as illustrated in the figure. As a result the

edge is subjected to a bending moment which causes the edge to bend inward.

This condition was alleviated by fabricating a design which incorporated

an edge stiffener on the outside of the enclosure as shown in Figure 3.20c.

With this design the eccentricity is reversed and the moment tends to bow the

sides outward. The magnitude of the bow is restrained by the surface which is

now placed in tension.

Reduced Extensional Stiffness of Sides. - Figure 3.18 shows that the sur-

face and edge compressive stresses are caused by the side restraint. Further-

more, this figure shows that if the effective stiffness of the surface is

greater than the sides then the top could expand more easily. The important

factor is the relative stiffness of the top and the sides. Previously, methods

for stiffening the top were discussed; as a corollary to this, methods of-

making the sides flexible were also investigated.

The first approach consisted of taking advantage of the directional nature

of the foil. As shown in Figure 3.14 the extensional stiffness of the foil

in the transverse direction is about one half the stiffness in the axial di-

rection. The first enclosures fabricated in this program were assembled with

the stiff foil direction oriented along the length of the enclosure and the

same texture pattern was carried down the long sides. The short sides (width)

had the pattern reversed. A subsequent enclosure was fabricated with the same

texture orientation on the surface, but the pattern on the long sides was re-

versed such that the more flexible direction was aligned with the length. The

short sides remained unchanged, retaining their flexibility.

A second technique employed to make the sides flexible was to use beads

embossed vertically in the sides in an attempt to achieve a bellows action.

Pleated Sides. - Results obtained from the study of thermal stresses in

isothermally heated flat plates with two edges restrained led to another ap-

proach for relieving the stresses in the surface of the enclosure. Figure

3.21 presents a series of plots taken from Reference 9 for the compressive

stress.in a heated plate considering various plate aspect ratios. These figures

show that even for a fully restrained boundary the stresses at the center of
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the plate are significantly reduced from the maximum plane stress condition
(i.e.,EaAT) for aspect ratios as great as a/b = 2. For aspect ratios of 1.0
or less the compressive stresses are less than one third the maximum value
over 50 percent of the plate width. If one were to factor in the partial edge
restraint representative of the sides these stresses would be reduced further.

This suggested that if the edge restraint provided by the sides in the
actual enclosure were made discontinuous, such that the aspect ratio of the
surface of the enclosure between the side discontinuities were less than one,
the stresses in the surface would be greatly reduced. To accomplish this the
sides of the enclosure were cut at selected intervals to limit the length of
the individual side segments. The cut sides were then sealed by placing
pleats on the inside surface which would not take any axial loads in the plane
of the side. (See Figure 3.19.)

The other point of interest shown in Figure 3.21 is that for all aspect
ratios considered, high compressive stresses are predicted near the edge re-
straint. As a result this approach requires edge stiffening to prevent edge
crippling.

3.5.4 Enclosure Venting (Burst) Pressure Test. - To evaluate the basic
behavior of the enclosure surface and the tie down system under positive in-
ternal pressure a series of pressure tests were performed on simulated enclo-
sures. For these tests a piece of textured foil was mounted in a fixture to
form one side of a closed chamber. 3DSX insulation was placed beneath the
foil. The foil was sealed around the edges and tied to the rear surface of the
enclosure with standard tie wires. Figure 3.22 illustrates a typical test
assembly, showing the 10-3/4 x 6-3/8 inch foil specimen in place. The rear
surface with all the tie down wires fastened and sealed is shown in Figure 3.23.

Three pressure tests were performed using this fixture, one each for the
.003 and .006 inch thick textured foil using a rectangular tie down spacing of
1.6 x 1.3 inch on centers as depicted in Figure 3.24. Considering the direc-
tional nature of the panel this spacing corresponded to a 1.4 inch square array
for the isotropic model used in the venting analysis. A third test was per-
formed on the .006 inch thick Hastelloy foil employing an enlarged tie down
spacing of 3.2 x 2.6 inches which is approximately equivalent to a 2.9 inch
square spacing for the isotropic model. All tests were instrumented with dial
gages to record the surface deflections (Figure 3.25). Water pressure was
applied in increments and deflection measurements were taken. Once the design
pressure was reached the pressure was relieved in preselected increments and
again deflection measurements were taken. In this manner both the loading and
unloading history of the foil was examined.

The test results are summarized in Table IX. Design pressures given in
this table were determined from Figures 3.15 and 3.16 using equivalent square
array tie down spacing of 1.4 and 2.9 inches for the two test rectangular tie
down spacings. The only failure observed in the 3-mil foil specimen was one
tie wire failed in the weld attachment. This failure occurred at approximately
3 psi which correlates closely with the design curve in Figure 3.15 for a 1.4
inch tie down spacing. The 6-mil foil specimen with closely spaced tie wires
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Figure 3.23 REAR SURFACE, VENTING PRESSURE TEST FIXTURE

-41-



NOTE: ALTERNATE CONFIGURATION WITH 2.6 x 3.2 INCH SPACING WAS ACHEIVED BY83-1414 UTILIZING EVERY OTHER ATTACHMENT POINT.

Figure 3.24 VENTING PRESSURE TEST FIXTURE ATTACHMENT AND
INSTRUMENTATION LOC'ATIONS
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behaved perfectly up to the proof test pressure of 5 psi and no post test fail-
ures were detected. In fact, for the pressure test of the 6-mil foil with
enlarged tie down spacing the same panel was employed with alternate tie wires
removed. In this test the test pressure exceeded the design value by a factor
of two.

TABLE IX

FOIL PRESSURE TEST RESULTS

Test Foil Tie Design Test
No. Thickness Spacing Pressure Pressure Remarks

(in) (in) (psi) (psi)

1 .003 1.3 x 1.6 3.0 3.0 Weld failure
at tie wire.

2 .006 1.3 x 1.6 4.0 5.0 No failures.

3 .006 2.6 x 3.2 2.0 4.0 Leak - No
foil failure.

The intent was to determine the ultimate failure pressure, but the test
had to be curtailed at 4.0 psi because of a water leak at the edge seal. The
only failure noted was a weld which failed at approximately 3.5 psi, or
slightly below the predicted value for an equivalent spacing of 2.9 inches.

Typical load-deflection curves taken at the center of each test panel for
the loading and unloading cycles of Specimens 1 and 2 are presented in Figure
3.26. Note that each curve exhibits a non-linear hysteresis behavior with both
curves indicating a slight permanent set. This was attributed to some slight
slippage and bending in the tie system. Also note that the-deformation of the
3-mil foil was approximately 1.5 times greater than the 6-mil foil for the same
tie down spacing at 3 psi pressure.

The load deflection curve for the 6-mil foil with the 3.2 x 2.6 inch tie
spacing is presented in Figure 3.27. Because of a pressure leak no unloading
curve was obtained. The deformations with the larger tie spacing were sub-
stantially greater. At 3 psi these deflections are 5.2 times greater than
Specimen 2, with closely spaced ties. This is slightly less than the factor
of 8 which would have been predicted on the basis of the enlarged tie spacing
using plate bending theory.

In general, the results of these tests were satisfactory in that they
correlated reasonably with the predicted results and showed that the basic
tie down concept could sustain acceptable venting pressures.
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3.6 Thermal Sizing of 3DSX Insulation

Representative insulation thickness requirements were established for
the thermal environment specified by the contract document (Figure 3.28).
Avco Corporation Program 2900 was utilized. This is a finite difference solu-
tion of a second order non-linear differential equation applicable to problems
involving one-dimensional heat conduction.

Because the thermal conductivity of the 3DSX insulation is pressure de-
pendent, a pressure history was also defined according to Figure 3.29 for
Area 1. This is a typical orbiter lower surface pressure history for an entry
trajectory (PHI-2) utilized in a previous study (Ref. 3) which has a thermal
pulse similar to that specified by MSFC for the current program. The 3DSX
thermal conduction properties used in the analysis are presented in Table X.
A substructure heat capacity was assumed equivalent to a .10 inch thick alumi-
num alloy.

Figure 3.30 presents the effect of insulation thickness on the maximum
structure temperature for the three trajectory heating pulses of Figure 3.28.
A cross-plot relating insulation thickness to maximum surface temperature is
presented in Figure 3.31 for a design allowable substructure temperature of
3500 F.

TABLE X

THERMAL PROPERTY MODEL FOR 3DSX MATERIAL
(5.8 Ib/ft 3 Density)

Thermal Conductivity
Temperature Specific Heat At One Atm.

(OF) (Btu/lb-oF) (Btu/ft-hr-OF)

5.6 lb/ft 3 Material

80 .19 .033

200 .20 .035

500 .24 .043

1000 .27 .077

1500 .29 .124

2000 .30 .181

2500 .31 .247

PRESSURE MULTIPLIER FOR THERMAL CONDUCTIVITY

Pressure Torr Multiplier

1.0 .55
10.0 .65

100.0 .90
760.0 1.00
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3.7 Weight Analysis

The weight of the 3DSX/Foil TPS includes several elements. In addition
to the 3DSX insulation itself the foil (both top and sides), wires, straps
and corner stiffeners must be included in the weight estimate. An additional
parameter to be considered is the panel size (L x W x H) because the unit
weight (lb/ft 2) will tend to decrease with increasing panel size for the same
thickness.

Figure 3.32 shows the results of a tradeoff study conducted on a typical
design using Hastelloy-X foil. The weight includes all the elements mentioned.
The tradeoff includes variations in panel size and foil thickness. Several
conclusions can be drawn from this figure:

1. Large size panels (of at least 1' x 1') are desirable because smaller
tiles introduce significant weight penalties especially at the smaller
thicknesses. Increasing the panel size from 1 x 1/2 to 1 x 1 foot
reduces the weight by 45 percent at .50 inch to 5 percent at 3.0-inch
thickness. Further increase in panel size to 2 x 4 feet increases
the weight saving an additional 6 to 10 percent.

2. Reducing the foil thickness from 5 to 3 mils saves between 10 and 15
percent on weight.

Of additional interest is the "effective density" of the 3DSX/Foil con-
cept as shown in Figure 3.33. As would be expected, this density remains
relatively low (= 8 lb/ft 3) at panel thicknesses exceeding one inch, but in-
creases to 12 lb/ft 3 when the thickness requirements drop to approximately
0.50 inch. These data indicate the attractiveness of the 3DSX/Foil concept
in that even at small thicknesses acceptable densities are obtained on the
composite system.

Table XI presents a weight breakdown of the 3DSX/Foil TPS for the case of
a maximum surface temperature of 18000 F and a 5-mil Hastelloy-X foil. The
3DSX insulation thickness (2.17 inches for 3500 F structure temperature) was
obtained from the thermal analysis described in Section 3.6 and the results
are presented for two panel sizes.
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TABLE XI

3DSX/FOIL WEIGHT BREAKDOWN

Maximum Surface Temperature = 18000 F

Maximum Structure Temperature = 3500 F

5-Mil Hastelloy-X Foil

Element Weight

(ibs)

1' x' 2' x 4'

3DSX Insulation (2.17 in. thick) 1.08 8.64

Foil (Top and Sides) .37 2.16

Attachment Wires (.02 inch diameter) .01 .12

Straps .01 .06

Stiffener and Guide .15 .45

Total Weight 1.62 11.43

Unit Weight (bs/ft 2 ) 1.62 1.43
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4.0 EXPERIMENTAL DEMONSTRATION OF PERFORMANCE AND REUSE CAPABILITY

4.1 Thermal Testing and Design Development

The thermal and acoustic cycling tests designed to demonstrate the per-
formance and reuse capability of the 3DSX/foil concept are summarized in Table

XII. Initially, the configuration was limited to the simple textured box,
6 x 12 x 2 inches thick, shown in Figure 4.1. Variations of the simple tex-

tured box design were limited to foil material and gage variations and to two
densities of the 3DSX insulation.

Six specimens of this basic design were fabricated. (These are Specimens
1 through 6 of Table XII.) Specimens 1 and 2 were identical and were consi-
dered a reference configuration. They were made of 6-mil Hastelloy-X foil
textured with Ardmore's Oxford pattern to a depth of 40 mils. The lower den-
sity (6 lb/ft 3) 3DSX insulation was installed. A total of ten 20-mil diameter
Hastelloy-X tie wires (spacing 2 x 2 inches) anchored the top foil to the
structure. In addition, sheet metal screw fasteners and nutstrips tied down
the bottom flange of the box.

Specimen 3 was identical to the reference except 3-mil Hastelloy-X foil
was used. The texture pattern and depth were the same as Specimens 1 and 2.
Specimens 4 and 5 were identical in configuration to the reference, but the
foil material was 5-mil Haynes 25. Specimen 6 was identical to 4 and 5 except
a higher density version of the 3DSX was used (nominal 10 lb/ft 3).

Figures 4.2 and 4.3 illustrate the completed test panel. It consists of
the six textured box specimens fastened to a 16 x 40 inch tee-stiffened alumi-
num alloy panel. The radiant heater facility is illustrated in Figure 4.4.
It is shown installed in a closed chamber designed to permit reduced pressure
testing.

The 3-mil Hastelloy-X panel was subjected to a preliminary test consist-
ing of a single cycle to an 18000 F surface temperature in an open (room-
ambient) heater facility illustrated in Figure 4.5. (This accounts for the
darkened appearance of Specimen 3 in Figure 4.2.) The purpose of this test
was to evaluate the general behavior of the configuration in the thermal envi-
ronment prior to exposure of the six specimen panel. The specimen surface was
subjected to a 300 second linear rise rate to 18000 F followed by a 300 second
hold at 18000 F, at which time the specimen was permitted to cool naturally.
Some permanent buckling of the top foil surfaces was apparent as seen in Figure
4.6, but the foil surface remained sealed.

The six specimen panel was then subjected to the initial thermal cycling

test in the closed chamber. The chamber was evacuated to a pressure level of
10 torr (air) and filled with nitrogen to atmospheric pressure prior to ini-

tiation of the heating cycle. The intent of this procedure was to achieve an
oxygen partial pressure representative of the reentry environment while main-
taining reliable operation of the heating facility. Exposure to 18000 F in
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TABLE XII

SPECIMEN DESCRIPTION AND TEST SUMMARY

Thermal
Cycles Acoustic

Specimen Description " No. 1 Exposure Remarks

(Temp. 0 F) (Min.)

154 dB 168 dB

1 Textured Box 1 (1800) 10 -- Specimens 1 through 6 had

6-mil Hastelloy-X edge crippling and top
buckling after one thermal

2 Textured Box 1 (1800) -- -- cycle.

6-mil Hastelloy-X

3 Textured Box 2 (1800) -- -- Edge cracks after two

3-mil Hastelloy-X thermal cycles.

4 Textured Box 1 (1800) 5 -- Edge cracks after one

5-mil Haynes 25 thermal cycle.

5 Textured Box 1 (1800) 5 -- Edge cracks after one

5-mil Haynes 25 thermal cycle.

6 Textured Box 1 (1800) 10 10 No cracks.

5-mil Haynes 25
10 PCF 3DSX

7 Textured Floating Top 10 (1800)* 10 10 Very slight top deforma-

Plain Sides tion. Sides buckled.

4-mil Hastelloy-X Top
3-mil Hastelloy-X Sides

8 Textured Box 10 (1800)* 10 10 Edge crippled.

6-mil Hastelloy-X Top buckled.

9 Textured Box, Stiffened 10 (1800) 5 10 Top buckled, sides O.K.

Edge, Cracks in top after

Texture Rotated 900 acoustic test.

5-mil Hastelloy-X

10 Beaded Sides, Flat Top with 10 (1800) 5 -- Top buckled, sides O.K.

HAT Stiffeners, Stiffened
Edge, 5-mil Hastelloy-X

11 Textured Box, Fluted Sides, 1 (2300) -- -- Overheat due to test

Stiffened Edge malfunction. Top buckled

5-mil Hastelloy-X and melted, sides O.K.

12 Textured Floating Top 1 (1800) -- -- Top O.K.

Beaded Sides, Stiffened Sides O.K.

Edge, 4 -mil Hastelloy-X Top
5-mil Hastelloy-X Sides

13 Tension - Top Design 1 (1800) -- -- Slight wrinkles in top.

Beaded Sides and Top Sides O.K.

Externally Stiffened Edge

*Note: Specimens 7 and 8 were also subjected to one thermal cycle at 12000, 14000, and 16000 F.
Buckling of Specimen 8 occurred at 14000 F temperature level.
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atmospheric air would have been an overly severe oxidizing environment for the
foil, considering the large number of thermal cycles planned. Operation of
the facility in nitrogen at atmospheric pressure was required to prevent arc-
ing and to provide adequate cooling to the lamps.

Figure 4.7 illustrates the test panel after the first heating cycle.
The maximum surface temperature was 17500 F. All the specimens basically
exhibited the same type of surface buckling on the top of the panel. Cracking
failures occurred in the 3-mil Hastelloy-X specimen and in two of the 5-mil
Haynes 25 specimens. (This was the second cycle for the 3-mil Hastelloy-X
specimen.) These cracks were located at the upper (hot) edge between the top
and side panels, near the center of the span (Figure 4.8). This edge appeared
to have suffered local compressive crippling; the cracks were located in the
crippled region. Figure 4.9 illustrates a typical crack failure.

At this point in the test program, it was apparent that the simple tex-
tured box design was inadequate for 18000 F service. Foil compression within
the texture pattern was not sufficient to accommodate the thermal strain with-
out local permanent deformation and resulting cracking. However, the simpli-
city of the configuration was sufficiently attractive to warrant evaluation
at reduced temperature to define the level at which the crippling problem
disappeared.

Two new specimens were fabricated for testing at reduced temperature
levels. Specimen 8 was identical to the reference configuration (Specimens
1 and 2). Specimen 7 was made in two pieces with a "floating top" which was
isolated from the untextured sides by a sliding joint detailed in Figure 4.10.
The top of the specimen was 4-mil Hastelloy-X textured with the Oxford pattern.
The sides were untextured 3-mil Hastelloy-X. Both specimens were mounted side
by side on a 1 inch aluminum alloy panel for testing in the ambient environ-
ment heating fixture (Figure 4.11).

The two specimens were subjected to four thermal cycles with successively
increasing peak surface temperatures at nominal levels of 12000, 14000, 16000,
and 18000 F. No permanent deformation of either specimen occurred at 12000 F.
However, the characteristic buckling pattern in the top surface of the simple
textured box (Specimen 8) was observed after the 14000 F exposure. The buck-
ling was not apparent during heating but appeared to develop during cool down
after the lamp exposure was terminated. Further cycling to the 16000 and
18000 F levels did not significantly change the damage pattern observed after
the 14000 F exposure (Figure 4.12).

The top surface of the "floating top" specimen remained flat through the
16000 F cycle. A slight deformation of the top surface was observed after the
18000 F cycle which appeared to be caused by interference with the severely
deformed side panel. Both the sides and ends of this specimen were compres-
sively crippled at intervals of one to two inches (Figures 4.13 and 4.14). It
was concluded that isolating the top from the side panels by a sliding joint
was effective in preventing top surface buckling at the 18000 F level. It
was also apparent that the untextured sides of the floating top specimen were
much more susceptible to buckling than were the sides of the simple textured
box specimens.
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Figure 4.9 DETAIL OF EDGE CRACK IN 3-mil HASTELLOY-X AFTER SECOND CYCLE
TO 18000 F (SPECIMEN 3)
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Figure 4.12 POST TEST APPEARANCE OF FLOATING TOP AND REFERENCE SPECIMENS
AFTER FOUR THERMAL CYCLES (12000 , 14000 , 16000 , 18000 F)
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Figure 4.13 COMPRESSIVE CRIPPLING OF SIDE OF FLOATING TOP SPECIMEN
(SPECIMEN 7)



1 2 3 4' 5 6

-3-

Figure 4.14 END VIEW OF SPECIMENS 7 AND 8 SHOWING COMPRESSIVE
CRIPPLING OF SPECIMEN 7



Thermal testing was continued on Specimens 7 and 8 for an additional ten
cycles in the ambient environment test fixture at 18000 F surface temperature
with no further degradation becoming apparent beyond the surface buckling
noted after the initial test series at four temperature levels (Figure 4.15).

Further evidence of the effectiveness of the texturing for alleviating
the thermal strains may be deduced from the behavior of the ends of the sample
textured box. As discussed in Section 3.3, the effective modulus of the tex-
tured foil is lower for loading across the flats of the hexagonal pattern.
For the simple textured box specimens, the orientation of the texture pattern
on the ends is necessarily opposite that on the sides of the box. The "flats"
of the texture pattern run vertical on the ends and horizontal in the sides.
It would appear that the texture pattern should elongate more freely when
exposed to loading applied in a direction perpendicular to the "flats". Be-
cause the sides of the textured box consistently suffered crippling during the
thermal tests while the ends did not, it appears that the more favorable pattern
orientation was indeed on the ends.

As discussed in Section 3.3, the temperature gradient in the sides and
ends tends to develop tensile stresses near the bottom which must be balanced
by compressive stresses near the top. These stresses are sufficient to cause
compressive crippling near the upper edge of the box. The design problem
appeared to be that of increasing the compressive stability of the top edge
and/or decreasing the apparent elastic modulus in the side panel to reduce the
compressive load at the edge.

Accordingly, three specimens were fabricated incorporating different
methods for relieving the crippling problem (Figure 4.16). All three designs
included an angle bracket welded into the top (hot surface) perimeter of the
specimen to improve the buckling stability of this edge. Each specimen uti-
lized a different method to flexibilize the side panels and limit the compres-
sive load in the stiffened edge to a manageable level.

Specimen 9 re-oriented the texture pattern to provide maximum flexibility
of the sides of the box in the direction parallel to the top surface. It was
necessary to splice the ends of the box by welding the end to the top surface
as shown in Figure 4.16.

Specimen 10 is detailed in Figure 4.17. It used untextured foil with a
beaded pattern running vertically on the sides and ends. The top was stiffened
with hat sections which also contained a rod to which the tie wires were
attached. Figures 4.18 and 4.19 illustrate two stages in the fabrication of
this design.

Specimen 11 had vertical slots incorporated into the sides and ends at
three inch intervals with pleated covers welded over the slots for sealing.
Figures 4.20 and 3.19 illustrate details of this design.

All three specimens were subjected to thermal exposure in the room am-
bient heating facility with peak surface temperatures of nominally 18000 F.
All three designs successfully eliminated the edge and side crippling problems
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experienced in thermal testing of the earlier textured box specimens, however,
all three specimens still experienced non-catastropic buckling (not crippling)
of the top surface after the first thermal cycle. Specimens 9 and 10 were
exposed to ten thermal cycles to 18000 F with no further degradation being
apparent (Figure 4.21). Specimen 11 was accidentally exposed to a transient
overheat pulse in excess of 23000 F which caused incipient melt of the top
surface. Therefore, testing of this specimen was terminated after one thermal
cycle.

A "third-generation" set of two specimens was fabricated which were de-
signed to eliminate the top buckling problem (Specimens 12 and 13). Specimen
12 (Figures 4.22 and 4.23) has a textured floating top similar to Specimen 7,
but with beaded sides and a stiffened upper edge similar to Specimen 10.

Specimen 13 is a "tension-top" design which is basically similar to
Specimen 10 except the top edge stiffeners are installed on the outside of
the box rather than inside (Figures 4.24 and 4.25). As discussed in Section
3.3, the thermal stress loading of the internally stiffened edges of Specimens
9 through 12 is such to cause bending of the triangular cross section edge
member toward the interior of the box. This loads the top panel compressively
causing buckling. By placing the edge stiffener on the outside of the box
the thermal loading tends to bend the edge member outward thus applying a ten-
sile stress to the top panel.

Specimens 12 and 13 were subjected to a single thermal cycle to 18000 F.
Post-test photos are shown in Figures 4.26 and 4.27. The thermo-structural
behavior of both specimens was much superior to the previous designs. The
sides and ends of both specimens were completely free of crippling and bending.
The floating top of Specimen 12 remained flat and free of buckles. The ten-
sion top of Specimen 13 had some slight shear buckles which propagated into
the stiffening beads causing several small local buckles in the beads. How-
ever, the specimen proved the general concept that the thermal environment can
be used to tension the top surface and prevent the relatively large top sur-
face buckling deformations observed in the earlier box specimens. The floating
top design apparently remains essentially stress-free in the thermal environ-
ment.

The 3DSX/foil specimens were instrumented with thermocouples welded to
the foil and to the substructure at the locations indicated in Figure 4.28.
The top surface thermocouples were used to monitor and control the input heat-
ing required to achieve the desired surface temperature history. Temperature
gradients measured by the thermocouples attached to the foil sides were of
interest because of their possible use in modeling the thermal stresses which
resulted in the crippling failures observed in several of the designs. Back-
face structure temperature response was monitored to evaluate any degradation
of insulation performance with thermal cycling.

Figure 4.29 presents typical temperature response data obtained during
the ten cycle reuse demonstration test of Specimen 7. A plot of predicted
backface response is also presented for comparison. The apparently better
than predicted performance as the structure temperature increased was due to poor
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thermal isolation of the structure and to three-dimensional heat transfer ef-
fects in the structure and mounting system. At early times, while backface
temperatures and heat losses are low, the comparison is good. The low heat

rates through the two-inch thickness of insulation made the structure re-
sponse very sensitive to non-isothermal effects at the rear of the specimen.

Thermal testing adequate for verification of transient response analysis
would require larger specimens and more careful control of thermal losses
than was feasible in these tests.

4.2 Acoustic Testing

Four acoustic tests, each of five minutes duration (simulating ten
launches), were performed at the facilities of Noise Unlimited, Inc.,

Somerville, N. J. Figure 4.30 shows the configuration of the panel prior to
the first acoustic exposure. It is the same panel subjected to the single

18000 F thermal exposure in the closed chamber with the reduced oxygen partial
pressure described in Section 4.2 and Figure 4.31, except that the 3-mil
Hastelloy-X specimen (Specimen 3) was replaced by the first floating top spe-

cimen (Specimen 7) and Specimen 2 was replaced by Specimen 8 which was of the
same configuration (simple textured box). Specimens 7 and 8 were of particu-

lar interest because they had previously undergone single thermal cycles at
12000, 14000, and 16000; and ten cycles at 18000 F surface temperature in the

room ambient heating facility. The other four specimens were all the simple
textured box design and had been previously exposed only to the single 18000 F

thermal cycle.

The test environment was an overall sound pressure level of 154 dB with
the spectral distribution indicated in Table XIII. Following the test, all
six specimens were visually examined for fatigue cracks with the aid of Zyglo.

The only apparent degradation which could be attributed to the acoustic ex-
posure was a slight propagation of existing cracks in the 5-mil Haynes 25

specimens (Specimens 5 and 6), which had been previously initiated during the
thermal exposure.

The second 5 minute acoustic exposure (also 154 dB) was performed on the
same panel but with Specimens 4 and 5 replaced by two of the second genera-
tion Hastelloy-X specimens (Specimens 9 and 10). These two specimens incor-
porated stiffened top/side edges and flexible sides and had each been exposed

to ten thermal cycles at 18000 F prior to the second acoustic test. No fur-
ther thermal exposure of the other four specimens (1, 2, 7, and 4) was per-
formed between the first and second acoustic tests.

No further damage was incurred by five of the six specimens subjected to
the second acoustic exposure. However, Specimen 9 did show evidence of an
incipient fatigue failure. A number of the individual hexagons in the texture
pattern developed surface cracks. These were consistently oriented in the
same location in the hexagon as shown in Figure 4.31 and appeared to extend

approximately halfway through the foil thickness. It should be noted that
six other specimens textured with the same pattern did not show this type of

damage. The consistent location of the cracks relative to the hexagon pattern
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TABLE XIII

ACOUSTIC CALIBRATION DATA

Octave Band Sound Pressure Level Sound Pressure Level Sound Pressure Level

Centerline for First Test (1 May) for Second Test (24 May) for Third Test (13 July)

(Hz) (dB) (dB) (dB)

31.5 134 135 146

63 138 138 146

125 142 147 162

250 149 146 161

500 151 150 158

1000 146 146 158

2000 140 143 154

4000 134 137 147

Overall 154 154 168

Test Duration* 5 min. 5 min. 10 min.

*.5 minute is equivalent to 1 mission.
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suggests that the individual dimples in the texture may have had natural fre-
quencies which were excited by the acoustic environment.

Several parameters are slightly different for the damaged specimen which
may contribute to a difference in critical frequency and resulting acoustic
damage susceptibility. The material was from a different batch, purchased
and textured at a different time. The depth of the texture was also slightly
greater (inadvertantly) than in the undamaged specimens.

The third and fourth acoustic exposures were at a level of 168 dB overall,
again for 5 minutes each on Specimens 6, 7, 8, and 9. The spectral distribu-
tion is indicated in Table XIII. The overall level and the distribution were
obtained from Reference 10 and represents the current design environment for
the base heating region of the shuttle orbiter.

Inspection of the four specimens following the first five minute exposure
at 168 dB revealed that two of the tie wires attaching the surface foil to the
structure were loosened. No further damage was apparent to any of the speci-
mens. Again, no further damage was apparent in any of the four specimens dur-
ing the second five minute exposure at 168 dB.

Disassembly of the specimens following the acoustic exposure revealed
that the tie wire loosening in the floating top specimen was caused by tie
strap failures around the weld where the strap is attached to the surface foil.
The tie straps, which are made of 3-mil foil, were badly oxidized. This pro-
bably contributed greatly to the observed failure and should be easily reme-
died by increasing the thickness of the tie strap foil.

The 3DSX insulation was in good condition with no evidence of thermal or
structural degradation, even where it contacted the hot surface foil. Some
trivial damage in the form of local fiber breakage occurred at the location
of the tie wire penetrations. No further damage was observed in the cracked
areas of the texture pattern of Specimen 9 which were originally observed
after the 154 dB test.

It is concluded that the two five minute exposures to the 168 dB acoustic
environment introduced no significant damage beyond that already in the speci-
mens prior to exposure. As observed in the previous tests, the panel design
must be such to prevent edge crippling since the crippled areas are suscepti-
ble to fatigue in both the thermal and acoustic environments. The stiffened
edge designs used in Specimens 9 through 13 were demonstrated effective in
eliminating the crippling problem.
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